
 973

Journal of The Korea Institute of Information Security & Cryptology
VOL.29, NO.5, Oct. 2019

ISSN 1598-3986(Print) 
ISSN 2288-2715(Online)

https://doi.org/10.13089/JKIISC.2019.29.5.973

 

코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 

검출에 관한 연구

장 영 수†‡

한국폴리텍대학

A Study on Software Security Vulnerability Detection Using Coding 

Standard Searching Technique

Young-Su Jang†‡

Korea Polytechnic

요   약

정보 보안의 중요성은 응용 소프트웨어의 보안으로 인해 국가, 조직 및 개인 수준에서 점점 더 강조되고 있다. 임

베디드 소프트웨어를 포함하는 높은 안전성 소프트웨어의 개발 기술은 항공 및 원자력 분야 등 에 국한되어 사용되었

다. 하지만 이러한 소프트웨어 유형은 이제 응용 소프트웨어 보안을 향상시키는 데 사용된다. 특히 보안 코딩은 방어

적 프로그래밍을 포괄하는 개념으로 소프트웨어 보안을 향상시킬 수 있다. 본 논문에서는 개선된 코딩 표준 검색 기

법을 적용한 소프트웨어 보안 취약성 탐지 기술을 제안한다. 공개된 정적 분석 도구는 소프트웨어 보안 가능성을 분

석하고 취약점을 유발하는 명령어를 분류하는 데 사용되었으며, 소프트웨어 취약점을 유발할 수 있는 API 및 버그 

패턴을 쉽게 감지하여 향상시킬 수 있다.

ABSTRACT

The importance of information security has been increasingly emphasized at the national, organizational, and individual 

levels due to the widespread adoption of software applications. High-safety software, which includes embedded software, 

should run without errors, similar to software used in the airline and nuclear energy sectors. Software development 

techniques in the above sectors are now being used to improve software security in other fields. Secure coding, in particular, 

is a concept encompassing defensive programming and is capable of improving software security. In this paper, we propose 

a software security vulnerability detection method using an improved coding standard searching technique. Public static 

analysis tools were used to assess software security and to classify the commands that induce vulnerability. Software security 

can be enhanced by detecting Application Programming Interfaces (APIs) and patterns that can induce vulnerability.

Keywords: Information Security, Secure Coding, Defensive Programming, Public Static Analysis tools

I. Introduction1) 

The quality of program code influences a 

Received(07. 09. 2019), Modified(08. 31. 2019), 

Accepted(09. 02. 2019)

†주저자, jyskkh@naver.com

‡교신저자, jyskkh@naver.com(Corresponding author)

variety of factors, including program 

security, repair, and maintenance. Most 

program errors stem from unexpected 

input values and the debugging of errors 

requires substantial personal and physical 

resources[1]. It is therefore essential to 

predict and trace the location of bugs that 



974 코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구

Fig. 1. Two-Level Processing Model (TLPM) for 

software vulnerability analysis.

arise throughout the course of a program’s 

operation because debugging is necessary 

to minimize the damage when 

uncontrollable or unexpected errors 

occur[2].

Defensive programming is a coding 

standard aimed at defining a coding style 

and format applied during the 

development of a program. Security 

vulnerabilities identified while developing 

a program or designing a compiler should 

be resolved to make the code more concise 

and easier to read, as well as to reduce 

the possible occurrence of bugs. Such a 

defensive programming technique gives 

first priority to the protection of a 

program from inappropriate input values, 

so that errors are exposed as they occur in 

the course of program execution[3]. 

Defensive programming facilitates the 

modification of code that produces errors. 

Furthermore, it prevents other programs 

and the entire system from being damaged 

when errors occur in the code.

In this study, we improve the security 

of applications using an improved secure 

coding detection technique. In order to 

achieve this, we divide the process of 

software vulnerability analysis into a 

vulnerability monitoring stage and a 

vulnerability processing stage. The first 

stage is focused on extracting 

vulnerability-inducing functions while the 

second stage is focused on processing 

extracted function vulnerability. The 

process is followed by the improvement of 

vulnerability-inducing functions and 

vulnerability categories. 

The remainder of this paper is organized 

as follows: Section Ⅱ reviews previously 

reported studies. Section Ⅲ details our 

security vulnerability processing model, 

Section Ⅳ presents the evaluation process, 

and Section Ⅴ discusses our rum-time 

measures. Section Ⅵ presents a 

comparison, and finally, Section Ⅶ 

presents our conclusions.

II. Literature review

A static analysis is commonly performed 

without actually executing the software. It 

examines applications on a non-runtime 

basis, which is advantageous in assessing 

applications and thereby detecting errors 

in the input and output of the software.    

  Flawfinder tool generally provides a 

database of application programming 

interface (API) symbols related to the 

vulnerability. This database can be used 

to evaluate vulnerability detection through 

static code analysis. We use a similar 

approach to define the values ​​of the 

authorized function text.

Zampetti et al.[4] used a flow-sensitive 

and inter-procedural system for the 

discovery of software vulnerabilities 

through a bottom up analysis of 

procedures, basic blocks, and the whole 

program. Typical precision issues with 

static analysis, especially when dealing 



정보보호학회논문지 (2019. 10) 975

with dynamically constructed strings, 

mean that they may identify several such 

illegal flows, even if these paths are 

infeasible. 

  Nagy et al.[5] applied the Java String 

Analyzer to extract models of program’s 

database queries. They used these models 

as the basis for a runtime monitoring and 

protection for SQL injection attacks.

  Jang and Choi[6] propose a technique to 

handle vulnerabilities by combining static 

and dynamic analysis techniques. The 

authors focus on the sanitization process 

and abstract away other detail of the 

application. Especially they created 

behavior information for extracted paths 

from the program control path. 

III. System model

3.1 Analysis model

  In this section, we detail our software 

security analysis model. The Two-Level 

Processing Model (TLPM) complies with a 

collection of guides and rules determined 

based on the requirements of the project 

and organization, as recommended by 

CERT/CC1) in accordance with secure 

coding standards. TLPM follows the 

general coding standard rules for software 

security analysis. In particular, through 

the use of secure coding standards, it is 

possible to classify coding errors, which 

are considered the main causes of software 

vulnerability. We use two analysis models, 

namely security vulnerability monitoring 

and security vulnerability analysis 

processing, to analyze software 

vulnerability, as seen in Fig.1. In the first 

stage of security vulnerability monitoring, 

coding vulnerability-inducing functions are 

1) https://www.sei.cmu.edu/

discerned. In this stage, the meta-data for 

vulnerability-inducing functions is created 

to be processed in the second stage. In the 

second stage of security vulnerability 

analysis processing, coding 

vulnerability-inducing functions are 

distinguished from functions that do not 

induce vulnerability.

3.2 Model implementation

3.2.1 Coding standard example

  The following is an example of the 

coding standards for a C/C++ and Java 

program with our method applied.

  (1) Declaration and initialization: 

typedef is used instead of define, 

and const is attached to a constant 

value for protection against possible 

modifications.

  (2) Expression:

“()” is used in consideration of the 

order of priority for operators, and 

sizeof() needs to be used at the time 

of integer size assignment.

  (3) Memory: 

The memory is assigned and cleared 

in the same module at the same 

block level, and it needs to be 

initialized as Null after the free() 

pointer validation function is used. 

The cleared memory is not 

re-accessed.  

  (4) Character and string: 

strncpy() is used instead of strcpy(); 

strncat() instead of strcat(); fgets() 

instead of gets(); and snprintf() 

instead of sprintf(). The data to be 

copied is checked to determine 

whether it is Null or exceeds the 

buffer size.



976 코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구

Procedure TLPM(M, S, KW, λ):
 1. SP = Ø

 2. KWc = Ø

 3. select the first source program s* (s* ∈ S)

 4. while TRUE do

 5.    SP = SP ∪ {s*}

 6.    S = S \ {s*}

 7.    KWc = KWc ∪ KWs*

 8.    if || KWc|| == || KW || then

 9.        s* = arg max(λR(si,m)+(1-λ)PNs(si))

10.        break

11.    end

12.    select the next source program s* (s* ∈ S)

13. end

14. return SP

End Procedure

Fig. 4. A brief scheme for TLPM.

  Function Types {

      None = 0,

      malloc = 1,

      strchr = 2,

      ...

      gets = 54,

      strcpy = 55,

      sprintf= 56

  }

Fig. 2. Example of security- vulnerable 

functions for C.

Example Rule 1: Conditional attempts.

(?:\s+[\d\w]\s?=)|(?:if\s?\([\d\w]\s?=)

Example Rule 2: Basic authentication bypass 

attempts.

(?:&&\s*(?:||)?\s*[([]\s*!)|(?:&\s*"\%)|(?:|\s*"

\s*\W*["\d])|(?:"\s*(?:n?and|x?or|not|\|\||\&\

&)\s+[\s\w]+=\s*\w+\s*--)|(?:"\s*\*\s*\w+\W

+")|(?:"\s*[^?\w\s=.,;\/)(]+\s*[(@]*\s*\w+\W

+\w)

Example Rule 3: Query attempts.
?:(select|;)\s+(?:benchmark|if|sleep)

Fig. 3. Example of internal database rulesets 

for C and Java.

3.2.2 Vulnerable function extraction

 We utilize a suffix array-based 

technique[7] to extract vulnerable 

functions as shown in Fig.2. Fig.3 shows 

an example of the internal database 

rulesets used for detecting vulnerabilities. 

Specifically, we use a phrase discovery 

algorithm[8] that employs a variant of 

suffix arrays extended with an auxiliary 

data structure. We remove single words 

that are comments and phrases beginning 

or ending with stop words. We inquire 

into words that are single words and 

phrases. Additionally, removing safe 

functions can reduce the calculation 

complexity. Brief operations of the TLPM 

and the working scheme for our model are 

presented in Fig.4. We define our model 

as follows:

TLPM(M, S, KW, λ)

where M is a set of secure coding 

standard,

  ∙S is a set of source programs,

  ∙KW refers to the extraction of   

vulnerability-inducing keywords,

  ∙λ(λ∈[0,1]) is used to obtain a tradeoff 

score between vulnerable and safe 

functions. 

Set KW extracts the keywords for 

vulnerability-inducing functions, and λ 

distinguishes vulnerable and safe 

functions.

  TLPM provides a set SP of vulnerability 

function-ranked lists to perform 

vulnerability analysis as follows:

    (1)

where R(si, m) is the relevance score for 

source program si to secure the coding 

standard m, and PNs(si) is the facet 

novelty score of source program si. 

  At the beginning of TLPM, no source 

program is selected (i.e., SP = Ø), and no 

vulnerability-inducing function is selected 

(i.e., KWc = Ø) either. TLPM selects the 



정보보호학회논문지 (2019. 10) 977

Notations Description

FS(kwj,kww)
The security-vulnerable facet of 

keywords (kw).

FK(kwj,si)
The frequency of a keyword 

(kw) in the source code(s).

t(kwj,si)

The number of times a 

keyword (kw) appears in the 

source code(s).

PNw(kwj)

The representative power of a 

keyword (kw) for a source 

code(s).

FS’(kwj,KWc)

The  keywords (kw) covered 

by a vulnerable command 

from a set KWc.

V-cmd
The vulnerability analysis 

performance.

Table 1. Summary of notations for facets.first source program s*, and then the set 

KWs* of keywords selected by s* is added 

to the vulnerability-inducing function set 

KWc. Afterward, the facet novelty score 

representing the vulnerability value of the 

vulnerability-inducing function is 

calculated, and the source program with 

the largest vulnerability score in Equation 

(2) is selected at the second position. 

Specifically, since the source programs 

cover many different types of 

vulnerability-inducing functions, we argue 

that there exists a set of keywords whose 

subsets can accurately represent different 

underlying facets. We can therefore select 

a source program subset to cover the 

keywords, so as to cover all the facets. 

This procedure is repeated until all 

vulnerable functions are identified. The 

vulnerability score indicates the riskiness 

of the vulnerable function and range from 

0~1, with 0 indicating no vulnerability 

and 1 indicating high vulnerability.

In order to identify the facets of 

security-vulnerable functions, we define 

security-vulnerability facets based on the 

keyword coverage. Table 1 shows the 

summary of notations for the novelty of 

each facet. Suppose a set KW of q 

keywords is extracted from n 

vulnerability-inducing functions, different 

underlying facets will contain different 

keyword subsets: 

  




     

(2)

where i∈[1,n], j,w∈[1,q], and FK(kwj,si) 

represents the frequency of 

vulnerability-inducing functions for the 

keyword kwj appearing in the source 

program si:

    




  (3)

where t(kwj,si) represents the number of 

times a keyword kwj appears in source 

program si. A larger facet score between 

two keywords indicates a higher degree of 

novelty.

In the secure coding standard, the 

novelty of a command keyword is defined 

as the degree of dissimilarity between a 

command keyword and a 

vulnerability-inducing command keyword 

set KWc as below:

  ′   (4)

where w,j∈[1,q] and FS’‘(kwj,KWc) 

represent the keywords covered by the 

vulnerable command from a set KWc of q 

keywords. The novelty between keyword 

kwj and KWc  in a source program is 

defined as the distance between kwj and 

any keyword in KWc:

 ′   ′  ╲ (5)

  We select set S from the source program 

with the largest vulnerability score of 



978 코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구

relevance and importance for the secure 

coding standard. We extract the current 

state of vulnerability-inducing commands 

based on the riskiness score from m. 

  
  ∀∈ 

(6)

where R(si, m) is the relevance score of 

source program si for the secure coding 

standard. We use the frequency to 

measure the representative power of a 

command keyword for a source program, 

since it is accepted that keywords with 

frequent occurrence in a source program 

have a strong relational power for that 

source program. Finally, the facet novelty 

score of source program si is given by:

  




 × (7)

3.2.3 Security vulnerability analysis

  To evaluate the vulnerability analysis 

performance, we used Command Keyword 

Retrieval[9]. Let stamethod(si) be the set 

of command keywords for which si is 

relevant. n is the total number of 

command keywords. Command Keyword 

Retrieval at rank r is defined as the 

percentage of command keywords covered 

by source programs:








 

 (8)

A larger V-cmd value indicates greater 

keyword coverage. When all keywords are 

covered, the value of V-cmd will equal 1. 

For any vulnerability level, we can find a 

minimal optimal rank so that the 

Command Keyword Retrieval value at that 

rank is equal to 1. When different 

command keywords have different threat 

levels, such as the vulnerability level, 

V-cmd measures can show which command 

keyword is the most vulnerable command 

keyword[10].

IV. Evaluation

4.1 Evaluation measures

  We used public static analysis tools to 

measure vulnerabilities instead of relying 

on reported vulnerabilities. Unlike the 

process of manual code review or 

penetration testing, which produces 

reported vulnerabilities, static analysis is 

a repeatable and scalable technique for 

measuring vulnerabilities[11].

  Flawfinder2) analyzes C/C++ source 

code to identify vulnerabilities using an 

internal database for the ruleset. 

  To determine the accuracy of the 

experiment, we used the Rough Auditing 

Tool for Security (RATS3)) program, a 

static analysis tool that identifies 

vulnerabilities in C/C++ source code. 

  FindBugs4) is another static analysis 

tool. FindBugs analyzes Java source code 

to determine the patterns of bugs (as well 

as program bugs) and suggests 

modifications while conducting 

vulnerability searches with regard to the 

compiled byte code. 

  We employed public static analysis tools 

to verify whether the software was 

developed without coding errors. In our 

system model, these tools are used to 

identify false positive errors and extract 

vulnerable functions and patterns from 

application programs.

2) http://www.dwheeler.com/flawfinder

3) http://www.estima.com/ratsmain.shtml

4) http://findbugs.sourceforge.net



정보보호학회논문지 (2019. 10) 979

Vulnerability CWE
Program

language
LOC

Test-cases
TLPM

Detection

Native 

tools

Detection
Illegit

set

Legit

set

Buffer handling

CWE-190 C/C++ 2,193  84  21 Success Success

CWE-191 C/C++ 1,590  92  13 Success Fail

CWE-120 Java 2,291 161  29 Success Fail

CWE-121 Java 1,892 109  31 Success Success

CWE-131 C/C++ 2,321 114  21 Success Fail

Input validation CWE-129 Java   930   20  10 Success Fail

Table 2. Results of the vulnerability evaluation using the Juliet test suite.

4.2 Empirical test suites

  To evaluate the TLPM verification results,

we used the Juliet test suite[12] for 

C/C++ and Java software. The cases 

cover 181 different Common Weakness 

Enumeration (CWE)5) entries. We 

employed the Juliet test suite to verify 

whether TLPM can successfully detect 

faults. The illegit suite includes over 50 

different illegal cases like buffer overflows 

and memory leaks. These inputs contain 

data that can destroy the input validation 

process for a program. Table 2 summarizes 

the results of vulnerability detection using 

the Juliet test suite. “Buffer handling” and 

“input validation“ are the most common 

security issues in programs, hence the 

problems in this area are the most 

common test cases in C/C++ and java. 

The third column lists the program 

language. The fourth column lists the Line 

of Code (LOC). The Test Cases column 

shows the number of test cases included 

in each set. The ”TLPM Detection“ column 

shows the detection results obtained with 

the TLPM method. The final column shows 

the detection results obtained with the 

public static analysis tools (i.e., 

5) https://cwe.mitre.org

Flawfinder, RATS, FindBugs). Public 

static analysis tools can detect ”CWE-190 

(integer overflow)“ and ”CWE-121 (stack 

based buffer overflow)“, but they do not 

detect ”incorrect buffer size calculations“ 

and ”validation of array index“.

4.3 Real-world test suites

  We used real-world Customer Order 

Service (COS) programs. These programs 

are used in the real world. Taking into 

consideration program approachability, we 

used online applications written in C and 

Java. For batch programs, we chose 

programs written in C rather than Java 

because the programs need to transfer 

data to external systems. The numbers of 

programs used were:

 (1) Online application C programs: 55     

(concurrent program users: 30 users),

 (2) Batch handling C programs: 10 

(number of handling: 50,000~80,000 

cases per day), and

 (3) Online application Java programs: 

100 (concurrent program users: 30 

users).



980 코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구

Vulnerability 
categories

Vulnerable
functions

FlawfinderTLPM vulnerable 

function detection count

RATS_TLPM vulnerable 

function detection count

Fixed size local 

buffer

strcat 4,312 4,012

strcpy 3,219 3,121

sprintf   695   598

Table 3.  Example of fixed size local buffer vulnerable function detection count from FlawfinderTLPM 

and RATS_TLPM in C/C++.

Fig. 5. Receiver operating characteristic (ROC) 

curves comparing the accuracy of 

vulnerability-inducing command detectors, one 

using the native detector and the other with 

TLPM.

 

Fig. 6. Vulnerability-inducing category 

detection for C programs.

4.4 Evaluation result

  In our model, the vulnerability of the 

programs was determined by evaluating 

vulnerability-inducing functions and the 

pattern of bugs. TLPM was applied to 

static analysis tools for vulnerability 

analysis.

4.4.1 Security vulnerability analysis for C programs

  Table 3 shows an example of the fixed 

size local buffer vulnerable functions of 

C/C++ programs extracted from security 

vulnerability analysis. The strcat() 

function achieved the best keyword 

retrieval, though there was no significant 

performance difference among the 

methods. The strcpy() function had the 

second best results with nearly similar 

performance.

  Fig.5 shows the results of 

vulnerability-inducing function discernment 

for the programs evaluated. The receiver 

operating characteristic (ROC) curves 

show that FlawfinderTLPM6) and 

RATS_TLPM7) reduced the number of false 

positives significantly. From the diagram, 

we see that FlawfinderTLPM and RATS_TLPM 

Receiver Operating Characteristic (ROC) 

curves have a very sharp rise from (0;0). 

Again, the detector using the TLPM 

method is more accurate over a wide 

range of false positive values. The 

vulnerability of C programs was classified 

into categories for race condition, deny all 

access, potential format string, fixed size 

local buffer, and vulnerable commands 

6) FlawfinderTLPM indicates the application of 

the TLPM method.

7) RATS_TLPM indicates the application of the 

TLPM method.



정보보호학회논문지 (2019. 10) 981

Fig. 7. ROC curves comparing the accuracy of 

vulnerability-inducing pattern detectors, one 

using the native detector and the other with the 

TLPM.

Fig. 8. Vulnerability-inducing category detection 

for Java programs.

Vulnerability 

categories

Findbugs vulnerable 

category detection count

Dodgy 109

Bad practice  82

Security  71

Malicious code  30

Table 4. Example of vulnerable category 

detection count for FindBugsTLPM in Java.
with variable input values to conduct 

vulnerability-related analyses. Fig.6 

shows the detection rates for 

vulnerability-inducing categories. Among 

the results, the fixed size local buffer is 

ranked number one. If a fixed size local 

buffer (e.g., an array) is used in an 

unsafe manner, overflowing the buffer 

allows an attacker to overwrite the 

Return Instruction Pointer (RIP) with an 

arbitrary value[6]. Ranked at number two 

is the vulnerable command with variable 

input values. If a variable-length string 

value is copied into a buffer that is too 

small to hold it, the string is truncated 

abruptly to fit the buffer. No attempt is 

made to trailing-align or trim the value, 

although strings are null-terminated.

4.4.2 Security vulnerability analysis for Java programs

  Table 4 shows an example of methods 

that can induce vulnerabilities in Java 

programs. The “Doddy” category has the 

highest keyword retrieval. The category of 

“Bad practice“ is second, with close 

performance for ”Security“.

  The vulnerability of Java programs was 

distinguished based on the pattern of 

bugs[13] using FindBugsTLPM8). Similar 

to the analysis of C programs, Fig.7 shows 

the patterns of bug discernment in the 

Java application programs analyzed. The 

ROC curves show that FindBugsTLPM 

significantly reduced the number of false 

positives. FindBugsTLPM detected program 

bugs and determined the pattern of bugs 

to provide guidelines for modification and 

to search for vulnerabilities in the 

compiled byte codes. The vulnerability 

patterns for Java programs were classified 

8) FindBugsTLPM indicates the application of 

the TLPM method.

into categories for correctness (COR), bad

practice (B.P), experimental (EXP), 

internationalization (INT), malicious code 

vulnerability (M.C.V), multithreaded 

correctness (M.C), performance (PER), 

security (SEC), and dodgy (DOD) to 

conduct vulnerability-related analyses. 

  Fig.8 shows the results of 



982 코딩 표준 검색 기법을 이용한 소프트웨어 보안 취약성 검출에 관한 연구

Fig. 9. The average performance of TLPM.

Fig. 10. Run-time for steps of TLPM 

implementation.

vulnerability-inducing pattern detection 

according to the categories. For M.C. in 

particular, TLPM detectors had a lower 

detection rate than native detectors. This 

is because of incorrect initialization and 

update of the static field in the source 

code. When we modified the field to 

initialize the object, the other thread 

could not access the stored object until 

the thread was completely initialized.  

V. Run-time measures

We examined the run-time of our 

proposed model. Fig.9 shows the average 

test performance of TLPM as the number 

of test examples is varied. We saw a 

substantial improvement in performance 

as the test set size increased. Fig.10 

shows the actual run-time for the 

different processes executed in our 

implementation of TLPM in the source 

programs. We divided our implementation 

into three parts: preprocessing, 

vulnerability command extraction, and 

secure coding application. The 

preprocessing step had the longest 

run-time, 150 milliseconds on average; 

secure coding application had the second 

longest run-time, taking on average 105 

milliseconds; vulnerability command 

extraction took 45 milliseconds. This 

means our implementation of TLPM takes 

took than 350 milliseconds to analyze 

vulnerabilities in the practical application 

source programs.

VI. Conclusion and future work

This paper proposes a novel TLPM that 

uses improved secure coding techniques to 

reduce the number of security vulnerabilities

in software. This model, along with a 

secure coding standard, will be useful in 

enhancing software security.  In this 

paper, we only provide a simple 

implementation of our prototype. 

Therefore, there is substantial room to 

improve the identification of application 

vulnerabilities with TLPM using other 

vulnerable-function extraction models. 

Furthermore, we can also improve the 

time effectiveness and extraction accuracy 

for our implementation.

References

[1]  “APCERT Annual Report 2017”, 

Carnegie Mellon University software 

engineering institute, 2018.

[2] J. Stark, “Product lifecycle 

management,” In Product Lifecycle 

Management, Springer, pp. 1-29, Dec. 

2015.

[3] P. Nunes, I. Medeiros, J. Fonseca, N. 



정보보호학회논문지 (2019. 10) 983

<저자소개>

장 영 수 (Young-Su Jang) 정회원

2011년 2월: 고려대학교 소프트웨어공학과 석사

2019년 8월: 고려대학교 컴퓨터·전파통신공학과 박사

2017년 12월~현재: 한국폴리텍대학 스마트소프트웨어학과 조교수

<관심분야> 소프트웨어 보안, 프로그래밍 언어, 정형기법

Neves, and M. Correia, “An empirical 

study on combining diverse static 

analysis tools for web security 

vulnerabilities based on development 

scenarios,” Computing, vol. 101, no. 2, 

pp. 161-185, Sep. 2019.

[4] F. Zampetti, S. Scalabrino, R. 

Oliveto, G. Canfora, and M. Penta, 

“How open source projects use static 

code analysis tools in continuous 

integration pipelines,” In IEEE/ACM 

14th International Conference on 

MSR, pp. 334-344, May. 2017.

[5] G. Nagy and A. Cleve, “A static code 

smell detector for SQL queries 

embedded in Java code,” IEEE, pp. 

147-152, Apr. 2017.

[6] Y.S. Jang and J.Y Choi, “Automatic 

prevention of buffer overflow 

vulnerability using candidate code 

generation,” IEICE TRANSACTIONS 

on Information and Systems, pp. 

3005-3018, Dec. 2018.

[7] T. Gagie, G. Manzini, and D. 

Valenzuela, “Compressed spaced suffix 

arrays,” Mathematics in Computer 

Science, pp. 151-157, May. 2017.

[8] N. Zhong, Y. Li, and S.T. Wu, 

"“Effective pattern discovery for text 

mining,” IEEE transactions on 

knowledge and data engineering, vol. 

24, no. 1, pp. 30-44, Apr. 2010.

[9] W. Webber, “Evaluating the 

Effectiveness of Keyword Search,” 

IEEE Data Eng. Bull, vol. 33, no. 1, 

pp. 54-59, Dec. 2010.

[10] S.S. Kia, B.V Scoy, B.J. Cortes, R.A. 

Freeman, K.M. Lynch, and S.  

Martinez, “Tutorial on dynamic 

average consensus: the problem, its 

applications, and the algorithms,” 

IEEE Control Systems Magazine, vol. 

39, no. 3, pp. 40-72, Apr. 2019.

[11] J. Bleier, E. Poll, H. Xu, and J. 

Visser, “Improving the usefulness of 

alerts generated by automated static 

analysis tools,” Oct. 2017.

[12] NIST, “Juliet test suite” 

https://samate.nist.gov/SARD/testsuite.

php, Jun. 2019.

[13] G. Balan and A.S. Popescu, 

“Detecting Java Compiled Malware 

using Machine Learning Techniques,” 

IEEE, pp. 435-439,  May. 2018.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


